
Mini Game Production 2
Technical Design Presentation

Team 3 - The Puppeteers



Procedural Content Generation Overview

- Picture of final game with boxes spawned (any view)
- Picture/gif ground with only boxes spawned (top view)
- Poisson Disk Sampling

- 2D procedural generated map of points for object (obstacles) placement
- Easy addition of new obstacle prefabs
- Easy control of object density in scene
- Easy control of object size variation
- O(N) time to generate N Poisson disk samples
- Citation: Robert Bridson. 2007. Fast Poisson disk sampling in arbitrary dimensions. In ACM 

SIGGRAPH 2007 sketches (SIGGRAPH '07). Association for Computing Machinery, New York, 
NY, USA, 22–es. https://doi.org/10.1145/1278780.1278807



Procedural Content Generation - Algorithm

Must generate a point list (points have coordinates and rotation values and exist in 2D vector list to pull from when rendering)

● Find the size of a points’ square (in the 2D space) using its given radius (radius = density input)
● Determine the number of times the cell size fits into sample region size, for each cell by getting the number of columns and rows (divide the 

width / cell size and rows / cell size )
● Create new vectors of sample candidate points
● Put them in a spawn point list (vector2)
● While spawn point list is not empty spawn a vector in a random range using a random angle of candidate point, new magnitude
● Radius/density is min of random range so that candidate is spawned outside spawn center

Assign this info to candidate point

● Verify point data in check below
● Once candidate point is verified, add it as a new spawn point in the list of spawn points to be used in game 
● Record which cell the sample point ends up in
● Continue until space is complete (i.e. max rejections reached)

Check if candidate point can be added into list of points to be spawned in the scene

● Candidate sample vector must be within sample region/zone
● Find out which cell the candidate is in, and search surround cells
● Get sample point's index
● Get distance between point at index and candidate point (using sqrMagnitude bc its cheaper on system to get than mag)
● If radius around object is too close to the point reject point
● Return is valid or not



Conveyor Belt

- Chose a rigidbody conveyor system to affect all objects in scene physically
- More comical; fits narrative and art style of game

- Normalized vectors for moving objects entering conveyor belts to slow them 
down enough to stay on the belt (avoiding an overshooting belt entirely)

- Low friction on belt to allow for object movement
- Gif/ picture of object transferring to/from connecting conveyor belts
- Gif/picture of multiple objects on conveyor belt (maybe main belt to show static 

vs dynamic objects)



Movement System

● New Unity Input System
● Physics Based Movement 

System
● Emphasis on unique controller 

feeling
● Three core movements (+ 3 

additional)



Movement System

● Walking Animation applied to “ghost rig” as a walking 
reference

● Robot rig targets walking reference
● Force applied to mimic less control
● Leaning

○ head moves targeting empty game
 object with force applied

● Walking
○ head matches ghost head
○ feet target ghost feet

● Arm Control
○ aims at empty game object with 

force applied



Movement System

● Additional functions related to the movement system
○ Grab

■ simple overview of implementation

○ Crouch
■ simple overview of implementation

○ Jump
■ simple overview of implementation



Game Manager

● Serialized game logic for game and 
level designers

● Centralized logic used in all game 
levels

● Communication between other 
scripts

● Interacts with the conveyor belt and 
order manager to generate and ship 
orders 

● Responsible for integration of 
save/load into levels



Save and Load

● Checkpoint saving system
○ Saving at the beginning of each level

● No saving during the level, only at the last checkpoint (start of current level)
● Orders, shelves, and obstacles are not saved due to the destructive nature of 

the game
○ Unable to save the game in an unplayable state

● Upon load, will start level from the beginning of the level they were on at save



UI Management

● UI manager is responsible for updating all UI elements on the screen
○ score
○ orders
○ number of lives

● Gets all necessary updates from Game Manager
● Does not have a monobehavior update function 

○ all updates manually called by game manager



Order Manager

● Responsible for the logic of creating and fulfilling orders
● Uses list of grabbable assets in scene to create order

○ ensures all orders are completable at the time of their creation

● Removes items from order upon request from game manager
● Notifies game manager when an order is complete



Shelf Item Spawning

- GameManager finds all shelf-tags in scene
(achieved via “shelf”-tags)

- The shelves are then populated randomly by
assets from a list of “Grabbable” assets and
“Decor” assets

- Manually configurable probability of generating:
- a “Grabbable” asset
- a “Decor” asset
- an empty asset



Shelf Item Spawning

- A min and max amount of a “Grabbable” assets
on each shelf and scene is also configurable

- The number of assets generated are tracked;
- If max “Grabbable” assets are reached,

prevent further spawns

- If min “Grabbable” assets won’t be reached,
Forcefully spawn in a “Grabbable” asset on
remaining spots


