Mini Game Production 2
Technical Design Presentation

Team 3 - The Puppeteers



Procedural Content Generation Overview

- Picture of final game with boxes spawned (any view)
- Picture/gif ground with only boxes spawned (top view)

- Poisson Disk Sampling

- 2D procedural generated map of points for object (obstacles) placement

- Easy addition of new obstacle prefabs

- Easy control of object density in scene

- Easy control of object size variation

- O(N) time to generate N Poisson disk samples

- Citation: Robert Bridson. 2007. Fast Poisson disk sampling in arbitrary dimensions. In ACM
SIGGRAPH 2007 sketches (SIGGRAPH '07). Association for Computing Machinery, New York,
NY, USA, 22—es. https.//doi.org/10.1145/1278780.1278807



Procedural Content Generation - Algorithm

Must generate a point list (points have coordinates and rotation values and exist in 2D vector list to pull from when rendering)

Find the size of a points’ square (in the 2D space) using its given radius (radius = density input)

Determine the number of times the cell size fits into sample region size, for each cell by getting the number of columns and rows (divide the
width / cell size and rows / cell size )

Create new vectors of sample candidate points

Put them in a spawn point list (vector2)

While spawn point list is not empty spawn a vector in a random range using a random angle of candidate point, new magnitude
Radius/density is min of random range so that candidate is spawned outside spawn center

Assign this info to candidate point

Verify point data in check below

Once candidate point is verified, add it as a new spawn point in the list of spawn points to be used in game
Record which cell the sample point ends up in

Continue until space is complete (i.e. max rejections reached)

Check if candidate point can be added into list of points to be spawned in the scene

Candidate sample vector must be within sample region/zone

Find out which cell the candidate is in, and search surround cells

Get sample point's index

Get distance between point at index and candidate point (using sqrMagnitude bc its cheaper on system to get than mag)



Conveyor Belt

- Chose arigidbody conveyor system to affect all objects in scene physically
More comical; fits narrative and art style of game

- Normalized vectors for moving objects entering conveyor belts to slow them
down enough to stay on the belt (avoiding an overshooting belt entirely)

- Low friction on belt to allow for object movement

- Gif/ picture of object transferring to/from connecting conveyor belts

- Gif/picture of multiple objects on conveyor belt (maybe main belt to show static
vs dynamic objects)



Movement System

e New Unity Input System

. Actions -+

e Physics Based Movement p— +
System swing +

. . move +

e Emphasis on unique controller - +
feeling Pause I
jump e

e Three core movements (+ 3 p— +
additional) grab I

OpenOrderList




Movement System

e Walking Animation applied to “ghost rig” as a walking
reference

e Robot rig targets walking reference

e F[orce applied to mimic less control

e Leaning

o head moves targeting empty game
object with force applied

e Walking
o head matches ghost head
o feettarget ghost feet

e Arm Control

o aims at empty game object with
force applied




Movement System

e Additional functions related to the movement system

o Grab

m simple overview of implementation
o Crouch

m simple overview of implementation
o Jump

m simple overview of implementation



Game Manager

Serialized game logic for game and
level designers

Centralized logic used in all game
levels

Communication between other
scripts

Interacts with the conveyor belt and
order manager to generate and ship
orders

Responsible for integration of
save/load into levels

Game Mechanics
Time Limit 180

Number Of Lives 3
Time Penalty 10
Distance For Order L 5

Order Logic
Number Of Orders 3

Order Size 3
Score Gain Per Order 100

Debug
Enable Debug Commi v

Print Debug v

What scene should we go to after level compli
Next Level Scene WinScreen




Save and Load

e Checkpoint saving system
o Saving at the beginning of each level

e No saving during the level, only at the last checkpoint (start of current level)
e Orders, shelves, and obstacles are not saved due to the destructive nature of

the game
o Unable to save the game in an unplayable state

e Upon load, will start level from the beginning of the level they were on at save



Ul Management

e Ul manager is responsible for updating all Ul elements on the screen
(@) score
o orders
o number of lives

e Gets all necessary updates from Game Manager

e Does not have a monobehavior update function
o all updates manually called by game manager



Order Manager

e Responsible for the logic of creating and fulfilling orders

e Uses list of grabbable assets in scene to create order
o ensures all orders are completable at the time of their creation

e Removes items from order upon request from game manager
e Notifies game manager when an order is complete



Shelf ltem Spawning

- GameManager finds all shelf-tags in scene
(achieved via “shelf”-tags)

- The shelves are then populated randomly by
assets from a list of “Grabbable” assets and
“Decor” assets

- Manually configurable probability of generating:
- a “Grabbable” asset
- a “Decor” asset
- an empty asset




Shelf ltem Spawning

- A min and max amount of a “Grabbable” assets
on each shelf and scene is also configurable

- The number of assets generated are tracked;
- If max “Grabbable” assets are reached,
prevent further spawns

- If min “Grabbable” assets won’t be reached, §
Forcefully spawn in a “Grabbable” asset on
remaining spots




